93B4D3Movil.png

MINE

Maestría en Ingeniería de Información (Master of Information Engineering)

Plan de estudios

Convención:

Curso en la Oferta de Cursos 2021-10

Curso en la Oferta de Cursos 2021-10

Curso en la Oferta de Cursos 2021-10

Curso no presente en la Oferta de Cursos 2021-10

Curso no presente en la Oferta de Cursos 2021-10

Curso no presente en la Oferta de Cursos 2021-10

Cursos de fundamentación

Seleccione sus cursos de fundamentación dentro de la siguiente oferta de materias:

Ciencia de datos aplicada
MINE-4101 4 creditos

Análisis de Big Data
MINE-4102 4 creditos

Administración del conocimiento
MINE-4103 4 creditos

Desarollo de Soluciones Cloud
ISIS-4426 4 créditos

Cursos de profundización

Seleccione sus cursos de profundización dentro de la siguiente oferta de materias:

Sistemas de recomendación
MINE-4201 4 creditos

Visual Analytics
ISIS-4822 4 creditos

Business Analytics
MBIT-4203 4 creditos

Cursos de complemento

Electiva Escuela de posgrados DISC
MXXX-yyyy 4 creditos

Electiva Maestrias uniandes
MXXX-yyyy 4 creditos

Cursos de integración

Modalidad de profundización:

Proyecto Final
MINE-4301 4 creditos
Prerrequisitos: LENG-4999

Modalidad de investigación:

Cursos ofrecidos en la Escuela de Verano

Los cursos ofrecidos para la Escuela de Verano son válidos como Profundización.

Decisiones Generan cambio Sabiduría Entendible, integrado Conocimiento Contextual, sintetizado Información Organizada, estructurada Datos Señales, eventos Fundamentación (12 créditos) Profundización (16 créditos) Integración (4 créditos) Electivas (8 créditos) MINE-4101: Ciencia de Datos Aplicada MINE-4102: Análisis de Big Data MINE-4103: Admin. del Conocimiento ISIS-4826: Visual Analytics MINE-4201: Sistemas de Recomendación MBIT-4203: Business Analytics MINE-4202: Admin. Proys. de Información MINE-4301: Proyecto Final XXXX-yyyy: Electiva 1 } XXXX-yyyy: Electiva 2

Decisiones Generan cambio Sabiduría Entendible, integrado Conocimiento Contextual, sintetizado Información Organizada, estructurada Datos Señales, eventos Fundamentación (12 créditos) Profundización (8 créditos 2 materias) Integración (12 créditos) Electivas (8 créditos) MINE-4101: Ciencia de Datos Aplicada MINE-4102: Análisis de Big Data MINE-4103: Admin. del Conocimiento ISIS-4826: Visual Analytics MINE-4201: Sistemas de Recomendación MBIT-4203: Business Analytics MINE-4202: Admin. Proys. de Información MINE-4301: Tesis I MINE-4302: Tesis II XXXX-yyyy: Electiva 1 } XXXX-yyyy: Electiva 2

Descripción de cursos

Créditos: 4

Objetivo general:

El curso se enfoca en el análisis de datos con el fin de darles un significado para comprender su naturaleza y aportar al contexto al que pertenecen por medio del uso de técnicas de modelado, estadística y herramientas computacionales de análisis de datos.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4101/

Oferta: Ciencia de Datos Aplicada

Créditos: 4

Objetivo general:

Desarrolla habilidades relacionadas con el diseño de infraestructura, la integración y análisis de cantidades masivas de información, relevantes para el usuario y para el ecosistema de una organización, provenientes de fuentes diversas, como dispositivos móviles, Web, redes sociales, flujos de datos en línea o infraestructuras en la nube. Se enfoca en el análisis de contenidos e información no estructurada o semiestructurada en condiciones de alta escalabilidad.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4102/

Oferta: Análisis de Información sobre Big Data

Créditos: 4

Objetivo general:

Se enfoca en la comprensión de lo que es el conocimiento, cómo es, cómo se usa y cómo puede ser manejado informáticamente. Con base en esto se estudia la problemática de cómo darle semántica a la información para volverla conocimiento, cómo incorporarlo, cuáles son los procesos de conocimiento y cómo administrar este conocimiento en una empresa, de manera que dicha empresa cuente con herramientas informáticas basadas en conocimiento que apoyen su operación y mejoramiento.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4103/

Oferta: Administración del conocimiento

Créditos: 4

Objetivo general:

Se enfoca en el análisis de información de contexto con el fin de determinar e inferir nueva información de interés para los usuarios y las organizaciones para apoyar el proceso de toma de decisiones de estos. Se estudian los modelos clásicos de recomendación, así como las tecnologías de punta que permiten personalizar dichas recomendaciones teniendo en cuenta consideraciones de privacidad, seguridad y perfiles de usuario.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4201/

Oferta: Sistemas de recomendación

Créditos: 4

Objetivo general:

Orientado a la comprensión y solución de retos asociados a las etapas de desarrollo de proyectos que incluyen como eje principal el manejo de información y que permiten el logro de los objetivos de una organización, Estas etapas corresponde a la identificación de requerimientos, recolección, almacenamiento, procesamiento y comunicación de los datos necesarios en la definición, montaje y operación de los proyectos. Algunos de los principales retos están relacionados con el manejo de fuentes heterogéneas, no estructuradas y con el gobierno de datos, calidad de datos y arquitecturas de integración.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4202

Oferta: Administración de proyectos de información

Créditos: 4

Objetivo general:

During the past years large-scale systems have experienced a constant evolution, addressing data ecosystems of an increasing scale and complexity. The persistent demand for advanced interoperability models has pushed the progressive development of the semantic technology. Such a technology, as the name itself suggests, aims at the specification of formal semantics that is adopted in order to give meanings to disparate raw data, information and knowledge, enabling in fact ecosystems suitable to advanced reasoning.

The core difference between the semantic technology and other data technologies, for instance the relational database, is its focus on the meaning of the data rather than on its structure only. The most relevant branch of the semantic technology is the Semantic Web technology, which uniquely identifies concepts and builds relationships among them through the Web infrastructure, enabling a global mechanism for linking data with each other.

This course is aimed at providing the principles underpinning the current Web semantic technology, as well as the skills required to enable that technology in real environments, eventually within complex systems. Bridging the gap between theory and application requires a contextual understanding of the semantic technology, in which the different aspects of knowledge and software engineering converge according to an integrated methodology.

We will establish such a methodology holistically and step-by-step, involving progressively all the assets required (languages, tools, software APIs) to build complete semantic ecosystems. An overview of the most popular applications, both with the empirical evaluation of the performance, will be an added value for the course which will end exploring the possible evolution of the semantic technology as well as some research open issues.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4203/

Oferta: Semantic Knowledge engineering and Applications

Créditos: 4

Objetivo general:

El uso y procesamiento de la información permite a diversas organizaciones desarrollar o mejorar sus procesos. Es posible identificar nuevos nichos de mercado, aprender sobre los hábitos de los clientes para mejorar la experiencia del usuario, soportar el desarrollo de políticas públicas, etc.

Sin embargo, cualquier proceso para análisis de datos debe cumplir las reglas que un Gobierno establece para manejo de datos personales y más aún respetar la privacidad que los principios éticos indican. Aunque el área de seguridad de la información ofrece bases y herramientas para garantizar confidencialidad, integridad y disponibilidad, garantizar la privacidad de la información es un área de interés más reciente.

El propósito de este curso es abordar los aspectos que impactan la privacidad de los individuos y la organizaciones debido al uso y procesamiento de la información y estudiar y analizar las soluciones que han sido desarrolladas para responder a esta problemática.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4204/

Oferta: Información, Seguridad y Privacidad

Créditos: 4

Objetivo general:

Recent World Wide Web advances have resulted in large amounts of online data in many application domains such as Text Analysis, Social and Information Network Analysis, and Recommender Systems. Machine learning techniques offer promising approaches to the design of algorithms for training computer programs to effectively and efficiently analyze such data. Network analysis techniques help make sense of social and information networks accessible today in a highly inter-connected world.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4205/

Oferta: Knowledge Discovery From Social and Information Networks

Créditos: 4

Objetivo general:

Se ilustran técnicas de análisis de información mediante la construcción de modelos apoyados en aprendizaje automático, tomando en consideración las características de representación, generación y uso de los datos en la toma de decisiones.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4206/

Oferta: Análisis con Machine Learning

Créditos: 4

Objetivo general:

Activity Recognition (AR) is the process that enables inference of human activity by analyzing sensor data, coming from devices like smartphones. AR lies at the heart of many context-aware applications in domains such as ambient intelligence, healthcare and wellness, sports and fitness analysis, surveillance, personalized advertising and others. AR problem focuses in the temporal nature of sensor data, analysis of imbalanced dataset and distribution changes over time. Daily activities are complex and personal, which introduce challenges to feature engineering and personalization. Also, new activities need learning methods allowing adaptation. In this course we study the activity recognition chain (data acquisition, preprocessing, segmentation, feature extraction, classification). The studied techniques can be applied to the analysis of other sequential data (sensor data, stock market data, voice recognition).

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4207/

Oferta: Activity Recognition from Sequential Sensor Datasets

Créditos:

Objetivo general:

"The objective of this course is that students learn how to design accurate, trustworthy and transparent Machine Learning tools for supporting decision making in high-stakes problems in the public sector. As a result of the knowledge obtained in this course, students should have an understanding of challenges typically faced while deploying Machine Learning tools, such as social licence, ethics, human-algorithm interaction, algorithmic fairness and interpretability, some of which are also applicable to the private sector. Student will learn to analyse and find mechanisms to overcome these challenges, and to use that knowledge for a careful and responsible design and deployment of these tools.

Students are expected to learn to:

•    Identify challenges and elements to be considered while designing and deploying Machine Learning to support decision-making in high-stakes problems in the public sector.

•    Construct, evaluate and validate candidate Machine Learning models that are accurate, trustworthy, ethical and transparent.

•    Acknowledge and evaluate challenges such as algorithmic fairness, model interpretability, human-algorithm interaction, transparency and ethics when constructing Machine Learning solutions for decision making with impact on humans."

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4208/

Oferta: Machine Learning for Decision

Créditos: 4

Objetivo general:

Organizaciones Centradas en Datos

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4209/

Oferta: Organizaciones Centradas en Datos

Créditos: 4

Objetivo general:

Busca desarrollar y evaluar la capacidad que tienen un estudiante de realizar de forma autónoma proyectos de manejo de informacion integrando los conocimientos y competencias adquiridos en los ciclos de formacion de la maestría.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4301/

Oferta: Proyecto final

Créditos: 4

Objetivo general:

Una tesis MINE debe resolver un problema cuyo foco está en un punto del ciclo de vida de la información. Con el propósito de contribuir a la solución del problema abordado, la información se obtiene, se procesa, se transforma, se analiza, se visualiza. Debe aplicar los conocimientos del programa y del contexto general de la Ingeniería de Sistemas y Computación, sin excluir la integración de otras áreas de conocimiento o de la ingeniería.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4302/

Oferta: Tesis I

Créditos: 4

Objetivo general:

Una tesis MINE debe resolver un problema cuyo foco está en un punto del ciclo de vida de la información. Con el propósito de contribuir a la solución del problema abordado, la información se obtiene, se procesa, se transforma, se analiza, se visualiza. Debe aplicar los conocimientos del programa y del contexto general de la Ingeniería de Sistemas y Computación, sin excluir la integración de otras áreas de conocimiento o de la ingeniería.

Sitio Web: https://cursos.virtual.uniandes.edu.co/mine4302/

Oferta: Tesis II