

Location privacy

Martín Ochoa  
Universidad del Rosario

joint work with Jorge Cuellar, Ruben Rios, Andrei
Sabelfeld, Per Hallgren, Xiaolu Hou, Xueou Wang
and Nils Tippenhauer

Motivation

❖ GPS enabled devices are ubiquitous

❖ Location-Based services are increasingly powerful

❖ Implementations of location-based services have been
attacked

❖

Location Services are Attacked

Privacy increasingly serious concern with attacks on well-known
services

External Attackers

• Government used attack to imprison users of gay dating apps
• Include Security attack to locate any Tinder user, Feb 2014
• "Girls around me" stalking app abusing Foursquare APIs,

March 2012

Internal Attackers

• Uber employees stalking VIPs and tracking reporters

Privacy-Preserving Speed-Constrained Location Queries Per Hallgren 3/1

Running example
❖ Finding friends

Location protection

Protection vs External Attackers

• Policies, enforced by the service
• Alice: is Bob close by (within r)?

• Bob: yes/no

NO
???

???
Bob

YES

Alice

r

Bob

Privacy-Preserving Speed-Constrained Location Queries Per Hallgren 5/1

Location protection

Protection vs External Attackers

• Policies, enforced by the service
• Alice: is Bob close by (within r)?

• Bob: yes/no

Privacy-Preserving Speed-Constrained Location Queries Per Hallgren 5/1

Problem
❖ How do we achieve utility and privacy?

❖ In other words, how do we share location securely?

❖ Exact location: not private

❖ Distance: triangulation attacks

❖ Obfuscated distance: still possible to triangulate or loss
of utility

❖ To third party: Do we trust third party?

Outline
❖ Preliminaries

❖ One solution: InnerCircle

❖ An improvement: BetterTimes

❖ A further enhancement: MaxPace

❖ Triangulation: Grids

❖ Moving targets

❖ Work in Progress/Future Work

Secure Multi-party Computation
❖ Location proximity is an instance of a multi-party

computation:  
 
f(location_A, location_B) = 1 if close, 
 0 otherwise 

❖ Very similar to original Millionaire’s Problem (Yao).

❖ Solvable i.e. with Garbled Circuits, Fully Homomorphic
encryption.

Homomorphic Encryption

❖ An encryption function [[]] is additively homomorphic
if:  
 
[[a]] + [[b]] = [[a + b]]  

❖ It follows:  
 
[[a*m]] = [[a]]*m

InnerCircle
❖ Note that: 
 

❖ It follows:  
 
 
 
contains a 0 iff d < r.

❖ InnerCircle is provably secure against semi-honest adversaries.  
 

The distance is calculated from encrypted data

• The distance between two points is computed as
• d =

p
(xA � xB)2 + (yA � yB)2

• What do we need in
��!
inpA to compute the distance?

• Alice only wants to send encrypted data
Jd2K = J(xA � xB)2 + (yA � yB)2K = ...
= Jx2

A + y2
AK� Jx2

B + y2
BK ((JxAK�2xB)� (JyAK�2yB))

• d2 can be computed from Jx2
A + y2AK, J2xAK and J2yAK

InnerCircle — The Protocol Per Hallgren 11/1

The comparison is a novel technique
Homomorphic "=0"

Alice Bob

JaK
(JaK JbK) �r

JcK
JcK

• c = 0 () a = b, random otherwise worthless protocol

• But! To compute d2  r2 Bob returns to Alice
• J(d2 � 0) · r0K, J(d2 � 1) · r1K, ..., J(d2 � r2) · rr2K

• Randomly shuffled

InnerCircle — The Protocol Per Hallgren 12/1

InnerCircle
The Case Study shows promise for small radius

• Results
• Under one second

• r=80 with 80 bits of security
• r=30 with 112 bits of security

• Faster than competing solutions

• r = 50 for 80 bits of security
• r = 75 for 112 bits of security

• Parallelization boosts performance almost linearly.

InnerCircle — Evaluation Per Hallgren 14/1

Malicious attackers
The threats of honest-but-curious adversaries

• Using a too weak attacker model can have serious
consequences

Malicious

???

NO

Bob

Alice

YES

??? Bob

Alice

BetterTimes — Weak attacker models Per Hallgren 16/1

The ↵�� attack

The attack

• ↵ = xA

• � = yA
• � = x2

A + y2A

Alice sends ↵, � and � s.t. � 6= ↵2 + �2

Many current solutions suffer

• Face recognition: Sadeghi et al. 2009, and Erkin et al. 2009
• Location proximity: Zhong et al. 2007, Sedenka and Gasti

2014, and Hallgren et al. 2015

BetterTimes — Weak attacker models Per Hallgren 17/1

BetterTimes

❖ From [[x]] we cannot compute [[x^2]].

❖ Missing operation: [[x]*[[y]].

❖ Idea: Outsource operation to Alice such that if result
[[z]] != [[x*y]] then result of functionality is garbled.

BetterTimes
BetterTimes

Alice Bob

BetterT imes(JxK, JyK)
Jx0K, Jy0K, JcK

Jz0K, Ja0K = JcK� Jy0K

JzK, JaK

Figure: Visualization of the assured multiplication protocol

BetterTimes — The BetterTimes Protocol Per Hallgren 22/1

Using BetterTimes in a formula

• BetterTimes assures that JaK encrypts zero if and only if
JzK = Jx · yK, and a uniformly random value otherwise

JaK = (Ja0K (Jz0K� Jy0K�ca)�cm)�⇢, with ⇢ random

a0 = z0cm + ycacm

• When Bob has computed the final result JresultK, he sends
JresultK +

P
ai to Alice, where ai is the assurance value

corresponding to each outsourced multiplication
• Alice receives the correct output if and only if she computed

all outsourced multiplications honestly, and a uniformly
random value otherwise

BetterTimes — The BetterTimes Protocol Per Hallgren 23/1

BetterTimes
Private Evaluation of Arithmetic Formula

Alice Bob
��!
inpA

evaluate(
��!
inpA,

���!
inpB)

Local computations

JxK, JyK

JzK, JaiK

BetterTimesBetterTimes

Arithmetic FormulaArithmetic Formula repeatable

JresultK + J
P

aiKJresultK or JrandomK

BetterTimes — The BetterTimes Protocol Per Hallgren 24/1

Swiping the planeThe MaxPace policy

Simple policy: slow the attacker down

1 2 3
Bob

1 2 3 4 5 6 7 8 9
Bob

MaxPace — Weak attacker models Per Hallgren 29/1

MaxSpace

❖ Simple idea: force attacker to swipe the plane slower by
limiting speed.

❖ Key insight: We can compute speed homomorphically
and garbled output of proximity request if attacker
moves too fast.

MaxSpace

locations, where tp is the minimum time required to receive a
response from a location query. This yields aplain = ⇡r

2 T
tp

.

B. Bounds for MaxPace
Now for an attacker constrained by MaxPace, for which

an upper bound is given. Comparing the upper bound of an
attacker on MaxPace to the attacker on the plain policy gives
the minimum advantage MaxPace has over a plain policy.

Unlike the unrestricted querying policy, the optimal attacker
on MaxPace is forced to query with overlapping coverages –
otherwise they are travelling faster than the limit h and learn
nothing at all. Note that the attacker may choose to query with
a distance of 2 · r with a large time interval to not have an
overlap but the attacker gains more knowledge when querying
as often as possible, as shown through Theorem 1.

Theorem 1 (Optimal attackers on MaxPace query as often as
possible). Given two queries qs = (ps, ts) and qe = (pe, te)
which do not violate the MaxPace policy, and where ps 6= pe. If
it is possible to define a third query qi = (pi, ti) such that for
ti and pi (ts < ti < te) _ (ps 6= pi 6= pe) holds, and qs, qi, qe

comply with MaxPace, then issuing the three queries qs, qi, qe

yields more information than issuing qs, qe.

Proof. By contradiction, assume that covr(qe) [covr(qs) is
equal to covr(qe)[covr(qi)[covr(qs). This implies that either
covr(qs) = covr(qi) or covr(qe) = covr(qi), which in turn
implies pi = pe _ pi = ps .

From Theorem 1, the attacker sends a location query as soon
as the policy allows them after moving one distance unit, thus
waiting at most s = 1/h time units between each query. The
coverage for each query is calculated as the area of a circle
of radius r, subtracting the area of the intersection with the
previous query. How to calculate the area of circle intersections
is given in [19]. The knowledge gained by an adversary for each
query after the first one is given in Equation (1).

⇡r
2 �

✓
2r2cos�1

✓
1

2r

◆
� 1

2

p
4r2 � 1

◆
(1)

For a more concise bound, simplifications are made to over-
approximate Equation (1). This means an under-approximation
of Equation (2) and over-approximation of Equation (3).

�2r2cos�1

✓
1

2r

◆
(2) 1

2

p
4r2 � 1 (3)

Note that limx!0 cos
�1(x) = ⇡

2 (as r � 1). Thus, an under-
approximation of Equation (2) is �2r2 ⇡

2 . Equation (3) can be
simplified by approximating

p
4r2 � 1 to

p
4r2. The concise

over-approximation of Equation (1) is given in Equation (4).

⇡r
2 �

✓
2r2

⇡

2
� 1

2
2r

◆
= ⇡r

2 � 2r2
⇡

2
+

1

2
2r = r (4)

The attacker is able to perform a total of T/s queries.
Including the first query, which covers an area of r2⇡, the final
area covered during DiskCoverage is given by:

aMaxPace = r

✓
T

s
� 1

◆
+ r

2
⇡

TABLE I: Speeds in m/s and km/h for the used scenarios

Activity Walking Running Cycling Bus Car (highway)
m/s 2 3 5 14 33

km/h 7.2 10.8 18 50.4 118.8

TABLE II: Bounds for different speed radiuses

Speed Radius
10 25 50 100

Walking 78.2 194.3 384.4 752.7
Running 52.2 130.0 258.1 508.8
Cycling 31.4 78.2 155.7 308.8

Bus 11.2 28.0 55.9 111.5
Car 4.8 11.9 23.8 47.5

C. Comparisons

To evaluate the policy, the example activities of walking,
running, cycling, riding a bus, and driving a car are considered,
as listed in Table I. To compare aplain and aMaxPace, the
ratio aplain

aMaxPace
is considered. Given the above example speeds

and reasonable values of r, consider Table II. The table shows
up to 753 times less information disclosure, demonstrating the
effectiveness of MaxPace in practical scenarios. The value of
tp is chosen as 200 milliseconds for the plain protocol.

D. MaxPace with Resetting

As highlighted in Section II, there are scenarios where
MaxPace is too restrictive. In these cases, it is beneficial if
the protocol can be reset. When a reset occurs, an attacker
will be able to reposition themselves independently of previous
queries. If during a time frame T the attacker performs e resets,
the bound of the attacker knowledge is r

�
T
s � e

�
+ ⇡r

2
e.

Concretely, consider a person who is walking and querying
a radius of 100 meters, where the protocol is reset every
15 minutes, the time unit is seconds, and where T = 3600
(one hour). The attacker on the plain policy covers exactly
565486677.6 square meters. MaxPace without resetting restricts
coverage to at most 751315.9m2, and MaxPace with resetting
gives a coverage of at most 876579.6m2. Though resetting in
this case causes over 16% extra information leakage, even with
resetting MaxPace yields with the given parameters 645 times
less information than the plain protocol.

IV. ENFORCEMENT WITHOUT TRUSTED THIRD PARTY

As foreshadowed earlier, MaxPace can be implemented in a
straightforward way using a trusted third party who stores and
manages location information for all users who are utilizing
the service. Any already existing service can easily deploy
MaxPace as an additional privacy measure. Many applications
scenarios lack a natural third party that can be trusted, and a
decentralized trust-model has obvious benefits as compared to
giving location information to third parties. Services are usually
not deployed in a decentralized manner without trusted parties,
as for most application scenarios there are no ad-hoc solutions
readily available.

This section describes how MaxPace can be enforced using
a Secure Multi-party Computations (SMC) protocol without
a trusted third party. The concrete protocol is referred to as
DecentMP (short for Decentralized MaxPace).

TriangulationMulti-run attacks on LBS

There are two stages in a multi-run attack on a users location

DiskCoverage DiskSearch

1 2 3
Bob

2 3

4

5

6
Bob

Privacy-Preserving Speed-Constrained Location Queries Per Hallgren 6/1

Grids

i

j

Fig. 2: Example of obfuscation function based on a lattice.

Definition 1. Let M = {M0, M1, . . . } be a partition of R2 (that is
S

i Mi = R2). Let d 2 P ⇢ R
be a degree of accuracy the subject would like to have for the disclosed information about his
location1. We say f is an obfuscation function:

f : M ⇥ P ⇥ T ! G
where G is the set of connected and convex sets of the obfuscated coordinates, such thatS

G2G = R2 and T is a time coordinate.

We now give a very natural example of obfuscation function based on a grid.

Example 1. Let M be a measurement grid. Let G be the sets resulting of a tessellation of the
plane by squares of side 2d for d 2 N that we call obfuscation squares or regions. Then we
define f as the function returning the obfuscation square containing the original position (x, y),
as depicted in Fig. 2. Formally:

f((x, y), d, t) = (i, j)

such that i · 2d + r = x with |r| < 2d and j · 2d + r0 = y with |r0| < 2d.
Each (i, j) 2 Z2 corresponds to a square of the tessellation. Note that f is independent of

time.

Now recall the example on Fig. 1a where, for di↵erent requests in time, we get an obfuscated
region containing our exact position but with a random center every time. This method was
discussed in the IETF2 geopriv mailing list. It can be formalized as follows:

Example 2. Given the original position (x, y), the obfuscation function g returns, for every
request, a disc of radius d which is displaced by a random vector no larger than d such that the
original position is contained in the disc Bd. Formally:

g((x, y), d, t) = Bd(r(t))

where r(t) is a random function of time such that (x, y) 2 Bd(r).

1Although in principle d could be any reasonable parameter defining an area, for example a number of
habitants, in this work we think of d as a physical distance typically defining an obfuscation area.

2The Internet Engineering Task Force http://www.ietf.org/

3

Fig. 4: The adversary can estimate the new position with better precision than intended by the
user

• The user always returns either Gi or Gj . Since f is honest and 8G 2 G G \M 6= M ,
the user will report Gj when he leaves the overlapping region. As a direct consequence of
Case 2, the adversary is able to reduce the uncertainty region.

• The user returns G
D � {Gi, Gj} based on some probability distribution D. Given a suf-

ficient number of samples, which can be obtained by reducing the requesting frequency
freq, the attacker is capable of determining the distribution and thus reduce the uncer-
tainty region.

Lemma 3. Consider the case where the attacker A and the user U have the following properties:

• U chooses a replying frequency freq = " > 0

• U travels at speed v  vM

then there exists a function f such that displacement-ind and past-displacement-ind hold.

Proof. This case presents several situations where the user might trade-o↵ between speed and
location privacy. In any case, since the speed of the user is bounded by vM , the area covered
during his movement is also bounded by A  ⇡ · (vM · freq)2, as depicted by the circle in
Fig. 5. Therefore, the user might adapt either its frequency freq > 0 or speed v < vM
such that A \ (Gi [Gi+1) � 1/C(d), where Gi is the i-th reported region and Gi+1 is the
subsequent reported region. That is, he never leaves the gray region adjacent to the initial
square in the above mentioned figure. Therefore, the adversary can not infer in which point of
the reported obfuscation region the user actually is after time freq. The user can repeat this
for all subsequent location reports. The trade-o↵ between privacy and speed is evident since
the user could either:

• By default go as further as possible within the allowed range

• Slow down and reach a random point within the wished reported obfuscation region

If the user chooses the first option then past-disp-ind does not hold after two steps or more
if we assume that the adversary is aware of this strategy since he knows the user will be in a
position near a border in the obfuscation region. In the second case, both displacement-ind and
past-disp-ind hold because of the randomness of the choice at the reported time freq.

10

Problem:

Moving targets
❖ Typically attacks in this setting involve "parsing" the plane, to then triangulate:

❖ But what if victim is moving? Should an attacker revisit some of previous
guesses? What is his best strategy?  

Moving targets
❖ We consider abstract attacks where both the target and the attacker

move according to a particular mobility pattern

❖ Our goal is to determine the attacker effort to locate the target with
a probability of at least p (usually p= ½).

static linear random walk random jump

Model
❖ We assume that many mobility models can be described by a

transition matrix P where pij is the probability of moving from
position i to j at any step

❖ Therefore we can calculate the probability of Bob (victim) being at a
particular position after k steps by taking the kth power of P

Events of interest

❖ We are interested in the probability of two events:
❖ Ek : is the event that Alice locates Bob within k steps

(i.e., k + 1 queries)

❖ Fj : is the event that Alice locates Bob in exactly j steps

Bounds
❖ An upper bound on Pr(Ek) gives a lower bound on k :

❖ If after k steps you have at most probability p => need at least k
steps to reach p.

❖ This is relatively easy to compute with the formula on previous
slide.

❖ A lower bound on Pr(Ek) gives an upper bound on k :
❖ If after k steps you have at least probability p => need at most k

steps to reach p.
❖ This is harder, it needs a concrete attack strategy to realize an

upper bound to p.

Lines vs. Planes

❖ We first tackle the problem when the space is linear and
obtain (rigorous) bounds for any attacker and for any
space size n when the victim moves in a random walk.
❖ In this case the structure of the matrix P allows for easier

algebraic bounds
❖ We can test this also numerically.

❖ In the plane, it is much harder to analytically derive such
bounds. Numerically we obtain similar bounds.
❖ Matrix structure is more complex in this case!

Random Walk Example
Theorem: Considering a random-walking victim, a
search space of size n and a probability ½, we
have that:

for a linear search space.

Linear
Jump

Results on Random Walks
❖ Linear Jumping Strategy (LJS)

❖ Achieves the optimal lower bound when the victim’s initial
position distribution is almost uniform (i.e., large alpha)

❖ Greedy Updating Attack Strategy (GUAS)
❖ More effective than LJS for non-uniform initial distributions

Evaluation with real mobility models
• Finally, we evaluated the performance of these strategies

with a real-world dataset

• We derived a transition matrix Ptaxi from the Beijing
Dataset
– GPS trajectories of taxis  

from city of Beijing (3rd ring).
– The area is discretized into  

884 locations of 500 x 500m
– Average sampling interval  

is around 177 seconds

Results on realistic dataset
• Our results show that GUAS performs significantly

better than LJS for more realistic mobility patterns
– GUAS consistently requires less than N/6 queries for p=0.5
– LJS requires more than 0.75N queries

Conclusions
❖ We establish a general formula for calculating the probability of the

attacker finding the victim after any number of queries
❖ We give upper and lower bounds on the minimum number of

queries to locate a victim with a given probability
❖ An optimal attacker needs at most M/2 queries with probability ½

❖ We implement two attacker strategies (LJS, GUAS) and
evaluated them in the case of
❖ Random walk victim
❖ Realistic mobility dataset

❖ GUAS strategy performs significantly better with realistic mobility
patters
❖ The attacker targets the victim in 134 steps (6.6 hours) with probability 1/2

Future Work
• We consider the evaluation of some countermeasures

– The LBS probabilistically returns a wrong result
– The LBS could verify that location claims conforms to some assumed transition

matrix P
– The LBS could impose limitations on the number of queries  

or the speed/frequency of queries

❖ Evaluation with different mobility models for different modes of
transport

❖ Consider more powerful attackers (e.g., colluding)

❖ Devise new attacker “optimal” strategies

References
❖ Innercircle: A parallelizable decentralized privacy-preserving location proximity protocol  

P Hallgren, M Ochoa, A Sabelfeld  
PST 2015

❖ BetterTimes - Privacy-Assured Outsourced Multiplications for Additively Homomorphic Encryption on Finite
Fields.  
Per A. Hallgren, Martín Ochoa, Andrei Sabelfeld:  
ProvSec 2015

❖ MaxPace: Speed-constrained location queries.  
Per A. Hallgren, Martín Ochoa, Andrei Sabelfeld:  
CNS 2016

❖ Indistinguishable regions in geographic privacy.  
Jorge Cuéllar, Martín Ochoa, Ruben Rios:  
SAC 2012

❖ Location Proximity Attacks Against Mobile Targets: Analytical Bounds and Attacker Strategies.  
Xueou Wang, Xiaolu Hou, Ruben Rios, Per A. Hallgren, Nils Ole Tippenhauer, Martín Ochoa.  
ESORICS 2018

