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Motivation

* GPS enabled devices are ubiquitous
* Location-Based services are increasingly powerful

* Implementations of location-based services have been
attacked

e Include Security attack to locate any Tinder user, Feb 2014

e "Girls around me" stalking app abusing Foursquare APls,
March 2012



Running example

* Finding friends

o Alice: is Bob close by (within r)?
e Bob: yes/no




Problem

* How do we achieve utility and privacy?

* In other words, how do we share location securely?
“ Exact location: not private
“ Distance: triangulation attacks

“ Obfuscated distance: still possible to triangulate or loss
of utility

« To third party: Do we trust third party?



Outline

+ Preliminaries

+ One solution: InnerCircle

* An improvement: BetterIimes

+ A further enhancement: MaxPace

* Triangulation: Grids

* Moving targets

* Work in Progress/Future Work



Secure Mult-party Computation

“ Location proximity is an instance of a multi-party
computation:

f(location_A, location_B) =1 if close,
0 otherwise

* Very similar to original Millionaire’s Problem (Yao).

# Solvable i.e. with Garbled Circuits, Fully Homomorphic
encryption.




Homomorphic Encryption

* An encryption function [[ |] is additively homomorphic
if:

[[all +[[D]] = [la + D]]

+ [t follows:

[[a*m]] = [[a]]"m



InnerCircle

+ Note that:

[d°] =[(xa —xB)* + (ya —yB)*] = ---
= [2%4 + vill® [2% + y3] © (<M@ 225) @ ([ya] o 2ys))

+ It follows:

[(d? —0)-7o], [(d* — 1) - 1], ..., [(d* — r?) - r,2]

containsaQiffd <r.

* InnerCircle is provably secure against semi-honest adversaries.



InnerCircle

e Results
e Under one second

e r=80 with 80 bits of security
e r=30 with 112 bits of security

e Faster than competing solutions

e r = 50 for 80 bits of security
e r =175 for 112 bits of security

o Parallelization boosts performance almost linearly.



Malicious attackers

Malicious

e 0 =1I4y
e B=ya
=

Alice sends a, B and v s.t. v # a? + /3



Better I imes

* From [[x]] we cannot compute [[x/2]].
« Missing operation: [[x]*[[y]].

+ Idea: Outsource operation to Alice such that if result
[[z]] = [[x*y]] then result of functionality is garbled.



Better I imes

Alce ﬂ' \ Bob.".|

BetterTimes([x], [y])

[T, [%'] [e]

[2], o] = [d oy

[a] = ([e']e ([Z]e[y]oca) ©em) ©p, with p random



Better I imes
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Swiping the plane




MaxSpace

« Simple idea: force attacker to swipe the plane slower by
limiting speed.

« Key insight: We can compute speed homomorphically
and garbled output of proximity request if attacker
moves too fast.



MaxSpace

TABLE I. Speeds in m/s and km/h for the used scenarios

Activity | Walking | Running | Cycling | Bus | Car (highway)
m/s 2 3 5 14 33
km/h 7.2 10.8 18 50.4 118.8

TABLE II: Bounds for different speed radiuses

Speed Radius
10 25 50 100
Walking | 78.2 | 194.3 | 384.4 | 752.7
Running | 52.2 | 130.0 | 258.1 | 508.8
Cycling 314 | 78.2 155.7 | 308.8
Bus 11.2 | 28.0 55.9 111.5
Car 4.8 11.9 23.8 47.5




Triangulation

DiskCoverage DiskSearch
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Problem:




Moving targets

« Typically attacks in this setting involve "parsing" the plane, to then triangulate:

* But what if victim is moving? Should an attacker revisit some of previous
guesses? What is his best strategy?



Moving targets

* We consider abstract attacks where both the target and the attacker
move according to a particular mobility pattern
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static linear random walk random jump

* Our goal is to determine the attacker effort to locate the target with
a probability of at least p (usually p=12).



Model

* We assume that many mobility models can be described by a
transition matrix P where p; . is the probability of moving from

position i to j at any step

Bt =p®.p= (0...1 ...

/pl,l P12 - P1,M
P21 P22 - D2.M

\PM,l PmMm,2 t PM,M

* Therefore we can calculate the probability of Bob (victim) being at a
particular position after k steps by taking the kth power of P



Events of interest

* We are interested in the probability of two events:
* B, 1 1s the event that Alice locates Bob within k steps

(1.e., k + 1 queries)

Ek = {EZ S k s.t. .Az — Bz}

* FJ. . 1s the event that Alice locates Bob in exactly j steps

Fj pp— {AJ — BJ}



Bounds

+ An upper bound on Pr(E,) gives a lower bound onk :

“ If after k steps you have at most probability p => need at least k
steps to reach p.

* This is relatively easy to compute with the formula on previous
slide.

+ A lower bound on Pr(E,) gives an upper bound onk :

* If after kK steps you have at least probability p => need at most k
steps to reach p.

« This is harder, it needs a concrete attack strategy to realize an
upper bound to p.



l.inesvs. Planes

* We first tackle the problem when the space is linear and
obtain (rigorous) bounds for any attacker and for any
space size N when the victim moves in a random walk.

+ In this case the structure of the matrix P allows for easier
algebraic bounds

+ We can test this also numerically.

*In the plane, it is much harder to analytically derive such
bounds. Numerically we obtain similar bounds.

* Matrix structure is more complex in this case!



Random Walk Example

Theorem: Considering a random-walking victim, a

search space of size n and a probability 2, we
have that:

k
max B, N ) Linear
; e V?Z“J 1 < ko< L%J Jump

for a linear search space.

B
© 60 06 0 0 0 o

A




Results on Random Walks

« Linear Jumping Strategy (LJS)

* Achieves the optimal lower bound when the victim’s initial
position distribution is almost uniform (i.e., large alpha)

+ Greedy Updating Attack Strategy (GUAS)

+ More effective than L]JS for non-uniform initial distributions
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Evaluation with real mobility models

- Finally, we evaluated the performance of these strategies
with a real-world dataset

- We derived a transition matrix P,__. from the Beijing

Dataset

- GPS trajectories of taxis
from city of Beijing (314 ring).

taxi

- The area is discretized into
884 locations of 500 x 500m

- Average sampling interval
is around 177 seconds




Results on realistic dataset

- Our results show that GUAS performs significantly
better than LJS for more realistic mobility patterns
- GUAS consistently requires less than N /6 queries for p=0.5

- LJS requires more than 0.75N queries
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Conclusions

+ We establish a general formula for calculating the probability of the
attacker finding the victim after any number of queries

+ We give upper and lower bounds on the minimum number of
queries to locate a victim with a given probability

# An optimal attacker needs at most M /2 queries with probability %>

+ We implement two attacker strategies (L]JS, GUAS) and

evaluated them in the case of
+ Random walk victim
« Realistic mobility dataset

+ GUAS strategy performs significantly better with realistic mobility
patters

* The attacker targets the victim in 134 steps (6.6 hours) with probability 1/2



Future Work

- We consider the evaluation of some countermeasures

- The LBS probabilistically returns a wrong result

- The LBS could verify that location claims conforms to some assumed transition
matrix P

- The LBS could impose limitations on the number of queries
or the speed /frequency of queries

» Evaluation with different mobility models for different modes of
transport

“ Consider more powerful attackers (e.g., colluding)

* Devise new attacker “optimal” strategies
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