

Exploring microbial diversity to further the bioethanol supply chain in Brazil

Dr. rer. nat. Diego Mauricio Riaño Pachón Evolutionary and Computational Biology Group Centro Nacional de Pesquisa em Energia e Materiais Laboratório Nacional de Ciência e Tecnologia do Bioetanol

http://bce.bioetanol.cnpem.br/

Brazilian Bioethanol Science and Technology Lab

Brazilian Centre of Research in Energy and Materials (CNPEM)

CTBE is part of Ministry of Science and Technology with other three National Labs

Brazilian Centre of Research in Energy and Materials (CNPEM)

CTBE is part of Ministry of Science and Technology with other three National Labs

Sirius: 3G under construction (2015)

Brazilian Synchroton Light Lab

Set of scientific instrumentation for the S application of UV and X-ray on studies of Advanced Materials, Nanosciences, Materials. Oil Biological Industry. Metallurav

Brazilian Nanotechnology National Laboratory

Create new advanced functional materials

NNANO required for sustainability

Brazilian Biosciences National Lab

Biotechnology and drug development

Brazilian Bioethanol Science and Technology Laboratory

www.bioethanol.org.br

Ministry of Science and Technology

Brazilian Bioethanol Science and Technology Laboratory

Replacing 10% of the world demand for gasoline by Brazilian ethanol in 2025

Ethanol Project (NIPE/Unicamp-CGEE/MCT)

A production of 250 billion liters of ethanol could generate in Brazil:

- Over 9 million new jobs (direct, indirect and induced).
- A raise of 13% in the GDP.
- 1000 new distilleries

Strategy: To create a National Laboratory that can produce scientific knowledge on the bioethanol production cycle, and able to face technological bottlenecks.

Brazilian Bioethanol Science and Technology Laboratory A National Laboratory on Bioethanol

Numbers:

- . Federal Funding: ~R\$ 90 million
- . Buildings: 8.722,28 m²
- Research team by 2014 (biologists, physicists, chemists and engineers): 170 employees

Brazilian Bioethanol Science and Technology Laboratory

Research Programs

Exploring microbial diversity to further bioethanol production in Brazil

Current collaboration with Prof. Dr. Gustavo H. Goldman and Dr. Juliana Velasco

Sugarcane processing Usinas/Mills/Ingenios

Source: UNICA

Other products from the bioethanol/sugar supply chain

Biorefinery

Some numbers about sugarcane in Brazil (South-Central region)

Pro	duct		Harvest					
		2011/2012	2012/2013	2013/2014				
Sugarcane ¹		493.159	532.758	594.101				
Sugar ¹		31.304	34.068	34.265				
Total Etha	nol ²	20.542	21.285	25.373				
Mix (%)	Sugar	48,44%	49,54%	45,36%				
	Ethanol	51,56%	2012/2013 2012 532.758 59 34.068 34 21.285 25 49,54% 45 50,46% 54	54,64%				
	Brazil Worl	d Lider in Sugarcane p	roduction	yong !				
	720 600 480 360 120 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Start Start						

Source: UNICA

500 km 🛌

- 1. Thousand tons
- 2. Million liters

Lignocellulosic ethanol (2G)

Yeasts commonly used in the production of bioethanol are very inefficient at using 5C

sugars

	Amount of polysaccharide	in wall (% w/w) ^a					
		Dicot walls		Grass	walls	Conifer walls	
	Polysaccharide	Primary	Secondary	Primary	Secondary	Primary	Secondary
	Xyloglucan	20–25	Minor	2-5	Minor	10	_b
	Glucuronoxylan		20–30		—		_
5C	Glucuronoarabinoxylan						
	(Gluco)mannan	3-5	2-5	2	0-5		
	Galactoglucomannan		0-3		_	$+^{\mathrm{b}}$	10-30
	β -(1 \rightarrow 3,1 \rightarrow 4)-glucan	Absent	Absent	2-15	Minor	Absent	Absent Schell

Where can we find organisms capable of using 5C sugars?

Let's look at the gastrointestinal track of insects living on/in sugarcane soils/roots

Organisms Selection

Table 2	
Properties of G11	eukaryotic endo-1,4-xylanases.

Xylanase	Species	Mass (kDa)	<i>V</i> _{max} (μmoles product/min/mg protein)
PbXynA	Pseudozyma brasiliensis sp. nov.	24	2792.0
-	Aspergillus ficuum AF-98	35.0	18.38
XynG2	Aspergillus oryzae RIB40	21	123.0
EX2			ano ³⁶⁰ Incucoccful
XylG	Netowycestilemogia FUN		genenauressiu

Genome sequencing

Characteristic	P. brasiliensis	P. antarctica	P. aphidis	P. flocculosa	P. hubeiensis	U. maydis	M. globosa
Assembly statistics							
Total scaffold length (Mbp)	17.33	18.07	17.92	23.31	18.44	19.74	8.96
N50 scaffolds (Mbp)	2.21	2.38	2.38	1.98	1.40	0.51	1.41
N90 scaffolds (Mbp)	1.72	2.07	2.07	1.48	1.09	0.48	1.01
GC content (%)							
Assembled	33.85	42.03	37.51	36.12	39.33	34.13	37.00
Protein coding	58.10	60.28	60.50	64.30	56.49	53.95	52.06
Number of protein coding genes	5768	6640	6011	6877	7472	6522	4286

?

http://bce.bioetanol.cnpem.br/cgi-bin/gb2/gbrowse/pseudozyma/

Genome sequence available in Genbank WGS: AWXO01000000 Short reads available at SRA: ERX311387

Oliveira JVDC et al., 2013. Genome Announc. 1(6):e00920-13. doi:10.1128/genomeA.00920-13.

Identification of isolates Be careful with BLASTphemy!

Legend for links to other resources: 🛄 UniGene 🖪 GEO 🖸 Gene 📓 Structure 🏧 Map Viewer 🌌 PubChem BioAssay

Accession	Description	Max score	Total score	Query coverage	<u> </u>	Max ident	Links
M901705.1	Uncultured basidiomycete ITS region including 18S rRNA gene, ITS1,	520	520	92%	5e-144	89%	
U056026.1	Uncultured Ustilaginaceae isolate 24.27c 18S ribosomal RNA gene, pa	516	516	93%	6e-143	89%	
Q832814.1	Pseudozyma hubeiensis isolate LH146 18S ribosomal RNA gene, partia	514	514	93%	2e-142	89%	
515182.1	Pseudozyma shanxiensis strain SN37 18S ribosomal RNA gene, partial	508	508	93%	1e-140	88%	
Y740055.1	Sporisorium nealii internal transcribed spacer 1, partial sequence; 5.8	503	503	93%	5e-139	88%	
Y740043.1	Sporisorium andropogonis internal transcribed spacer 1, partial seque	499	499	93%	6e-138	88%	
<u>Y740164.1</u>	Macalpinomyces tristachyae internal transcribed spacer 1, partial se	497	497	93%	2e-137	88%	
740168.1	Ustilago cynodontis internal transcribed spacer 1, partial sequence;	494	494	93%	3e-136	88%	
143013.1	Ustilago cynodontis isolate UE internal transcribed spacer 1, partial s	492	492	6	1e-135	88%	
919774.1	Pseudozyma fusiformata isolate AP6 internal transcribed spacer 1, pa	490	490	89%	4e-135	89%	
740172.1	Ustilago striiformis internal transcribed spacer 1, partial sequence; 5	488	480	-	1e-134	88%	
038825.1	Ustilago cynodontis internal transcribed spacer 1, 5.8S ribosomal RN/	483	48	-69	5e-133	87%	
J480258.1	Uncultured soil fungus clone CS2M5c37P internal transcribed spacer	481	481	93%	2e-132	87%	
740165.1	Ustilago alcornii internal transcribed spacer 1, partial sequence; 5.85				2e-132	87%	
<u>J139172.1</u>	Sporisorium spinulosum voucher HMAS 193085 18S ribosomal RNA gei		.4>	93%	8e-132	87%	
1516997.1	Uncultured Ustilago clone IIN4-14 18S ribosomal RNA gene, partial se	<u>479</u>	479	93%	8e-132	87%	
8180728.1	Pseudozyma graminicola genes for ITS1, 5.8S rRNA, ITS2	<u>479</u>	79	93%	8e-132	87%	
740054.1	Sporisorium modestum internal transcribed spacer 1 parts sequ	<u>479</u>	479	93%	8e-132	87%	
740152.1	Macalpinomyces simplex internal transcribed space pa		473	93%	4e-130	87%	
188382.1	Ustilaginomycete sp. DD-0128.9 internal cribe nace part	472	472	93%	1e-129	87%	
344970.1	Sporisorium aegypticum internal coscribition er partial uen	468	468	93%	2e-128	87%	
740073.1	Ustilago trichophora internal trans ed si en sa el segu e:	468	468	93%	2e-128	87%	

Identification of a new species in the

Identifying the gene responsible for the function – exploiting the genome information

Mass Spectrometry: Coverage 24%

1MKFSTILAFVGAAGAVAASPIAAPSGESAGLEKRQSINYVQNYNGN51KYNEGAGTYSGNWNNPSDFVIGLGWSTGTSNRVINFNGNYQSNQGS101YGWLNNPLTEYYVVENYSYDPCSVSNTQVVGSVYSDGASYKICKHT151PSIQGTKTFGQYFSVRSKRSSGSVTLANHFNAWKKYGFANGATNP201QVFATEAFSGQGSVSTTISG

Endo-1,4-β-xylanase

RAxML WAG+I+Γ 500 bootstrap replicates

Gene families in Pseudozyma

NEXT:

Xylose transportes?

Evolution of xylose uptake in Basiodiomycetes

Some other projects

- Comparative genomics of cellulose producing bacteria
- Genome sequencing, assembly and annotation of sugarcane cultivars
 - Deciphering gene regulatory networks in C4 photosynthesis

Want more details? Interested in joining the group?

http://bce.bioetanol.cnpem.br/ http://www.bioetanol.cnpem.br/

diego.riano@bioetanol.org.br

EDITORIAL

nature genetics

Call for data analysis papers

Community standards for data access, interoperability and metadata only make sense if data are creatively reused to further research. We are therefore inviting the submission of Analysis papers that reformat and integrate existing data sets to generate substantial novel insights into gene expression in cell differentiation transitions and different cell fates.

THANKS

http://bce.bioetanol.cnpem.br/

diego.riano@bioetanol.org.br